Symbolic computation of exact solutions expressible in hyperbolic and elliptic functions for nonlinear PDEs
نویسندگان
چکیده
Algorithms are presented for the tanhand sech-methods, which lead to closed-form solutions of nonlinear ordinary and partial differential equations (ODEs and PDEs). New algorithms are given to find exact polynomial solutions of ODEs and PDEs in terms of Jacobi’s elliptic functions. For systems with parameters, the algorithms determine the conditions on the parameters so that the differential equations admit polynomial solutions in tanh, sech, combinations thereof, Jacobi’s sn or cn functions. Examples illustrate key steps of the algorithms. The new algorithms are implemented in Mathematica. The package PDESpecialSolutions.m can be used to automatically compute new special solutions of nonlinear PDEs. Use of the package, implementation issues, scope, limitations, and future extensions of the software are addressed. A survey is given of related algorithms and symbolic software to compute exact solutions of nonlinear differential equations. This material is based upon research supported by the National Science Foundation under Grants Nos. DMS-9732069, DMS-9912293 and CCR-9901929. ⋆Correspondence: [email protected]
منابع مشابه
Symbolic algorithms for the Painlevé test , special solutions , and recursion operators for nonlinear PDEs
This paper discusses the algorithms and implementations of three Mathematica packages for the study of integrability and the computation of closed-form solutions of nonlinear polynomial PDEs. The first package, PainleveTest.m, symbolically performs the Painlevé integrability test. The second package, PDESpecialSolutions.m, computes exact solutions expressible in hyperbolic or elliptic functions...
متن کاملSymbolic computation of exact solutions expressible in hyperbolic and elliptic functions for nonlinear partial differential and differential-difference equations
The Mathematica implementation of the tanh and sech-methods for computing exact travelling wave solutions of nonlinear partial differential equations (PDEs) is presented. These methods also apply to ordinary differential equations (ODEs). New algorithms are given to compute polynomial solutions of ODEs and PDEs in terms of the Jacobi elliptic functions. An adaptation of the tanh-method to nonli...
متن کاملSome new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation
In this paper, we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method, homogeneous balance method, extended F-expansion method. By using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...
متن کاملSymbolic Computation and the Extended Hyperbolic Function Method for Constructing Exact Traveling Solutions of Nonlinear PDEs
On the basis of the computer symbolic system Maple and the extended hyperbolic function method, we develop a more mathematically rigorous and systematic procedure for constructing exact solitary wave solutions and exact periodic traveling wave solutions in triangle form of various nonlinear partial differential equations that are with physical backgrounds. Compared with the existing methods, th...
متن کاملNew Jacobi Elliptic Functions Solutions for the Combined KdV-MKdV Equation
In this work, we established exact solutions for the combined KdV-MKdV equation. By constructing four new types of Jacobi elliptic functions solutions, the Jacobi elliptic functions expansion method will be extend. With the aid of symbolic computation system mathematica, obtain some new exact periodic solutions of nonlinear combined KdV-MKdV equation , and these solutions are degenerated to sol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Symb. Comput.
دوره 37 شماره
صفحات -
تاریخ انتشار 2004